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Abstract 
More than ever before, efforts are being made to spend health care dollars on interventions that are 
known to be appropriate and effective for a given patient with a given condition. To determine 
effectiveness, valid and reliable outcome measures are needed, but selecting which ones to use can be 
a highly complex task. Factor analysis, though most frequently used for data reduction and scale 
development, holds great promise as a tool for clinician-scientists to select an optimal combination 
of outcome measures. This tutorial explores the key theoretical concepts associated with performing 
a factor analysis with this particular purpose and provides hypothetical examples designed to assist 
the reader in applying the technique and making sense of the output. 

Abrege 
Plus que jamais, des efforts sont deployes pour affecter les fonds du secteur de la sante a des 
interventions qui seront appropriees et efficaces pour un patient donne souffrant d'un trouble 
quelconque. Pour determiner l' efficacite, il faut des mesures de resultats valides et fiables, mais il peut 
etretrescomplexedechoisir la bonne mesure. L' analysefactorielle, qui sert generalement ala reduction 
de donnees et a I'elaboration d'echelles, constitue un outil tres prometteur pour les cliniciens­
chercheurs qui doivent choisir une combinaison optimale de mesures de resultats. Ce tutoriel explore 
des concepts theoriques cles lies a la tenue d'une analyse factorielle a cette fin et off re des exemples 
hypothetiques con~us pour aider le lecteur a mettre en pratique la technique et a comprendre les 
resultats. 
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Introduction 

I n health care generally, and in the field of rehabilitation science in particular, 
a critical question occupies much of what we do. The question is, "How can the 
benefits of my intervention best be documented?" or, stated differently, "What 

outcome measures should I use to show that my intervention was successful?" In large 
part, questions such as these have become increasingly important over the last 20 years 
due to a shift in our thinking about how to manage health care delivery from models 
based on the cost of intervention, to models based on the value of intervention 
(Barbour, 1994; Lanser, 1999). 

Cost is still a component of the value-based model; however, it is the cost relative 
to the benefit (the cost/benefit ratio) that is emphasized. Today's patients ask questions 
such as, "If I buy the more expensive device, is it really all that much better than the 
cheaper one?" Today's employers ask, "Can you prove that your intervention has made 
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a difference in that patient's life?" or "Is there a more 
effective/efficient intervention?" Finally, third-party 
payers still want to know, "Is our money being well 
spent?" 

These factors have converged and made it essential 
for clinicians to demonstrate outcomes of care. As Beck 
(2000) noted, today's stakeholders are seeking 
substantive evidence that the intervention and/or 
rehabilitation provided actually makes a difference in 
the patient's life. Today, clinical opinion and anecdotal 
patient reports have ceded their relevance to 
quantitative outcome measures. Stakeholders will 
continue to seek proof that the data demonstrates that 
the appropriate outcome was achieved. 

A Potential Tool for Making the Case 
Some very real challenges face clinicians who wish 

to demonstrate the effectiveness of their intervention 
methods. For example, an audiologist who fits bone­
anchored hearing aids (BAHA) might have ten or more 
variables that measure outcomes such as speech 
recognition, sound quality, patient satisfaction, and 
patient quality of life. Similarly, a speech-language 
pathologist who works with children and adolescents 
who stutter probably tracks at least ten variables, any 
one or all of which are generally believed to reflect 
treatment outcomes. Such variables might include 
measures of percent syllables stuttered, rate of speaking, 
and stuttering severity in a variety of contexts in addition 
to speaker self-perception, satisfaction with treatment, 
self-efficacy, and perceptions of parents and peers. Which 
variables are the most salient indices of outcome, and 
how does one know? Factor analysis affords both 
clinicians a strategy for demonstrating the outcomes of 
care, especially when they have a large number of 
dependent variables of relatively unknown consequence 
or of questionable importance. Before wading directly 
into factor analysis, let us establish a common 
understanding of the phenomenon of multi­
dimensional outcomes. 

Multi -dimensional Outcomes 
The demand for proof of outcomes of care inevitably 

begs the question, "What constitutes good proof'?"1 Is it 
acceptable to just pick a valid and reliable outcome 
measure at will to evaluate a person's post-intervention 
performance? Should we choose two or three? How do 
we decide? 

First, we should understand the concept of 
dimensionality of outcome. The argument goes like 
this. If outcome for a particular health condition were 
uni-dimensional, then any measurement of outcome in 
that one dimension would be highly related with all 
other measurements in that dimension and would allow 
one to fully understand the outcome for a patient from 
only one measure. For example, when fitting a person 
with a hearing aid, one could decide that the outcome 
measure will be the patient's ability to understand 
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speech in quiet with the hearing aid on. This would 
assume that the audiologist believes that the patient's 
understanding of aided speech in quiet is the single most 
salient dimension of hearing aid outcome and that, even 
if there are other viable indices of outcomes, they relate 
so closely to understanding of aided speech in quiet 
conditions that they would be redundant. In other words, 
if hearing aid outcome were uni-dimensional, then 
improved performance on this one measure of speech 
understanding would allow one to generalize to all other 
dimensions of outcome. Similarly, if post-treatment 
fluency were the only salient outcome of stuttering 
therapy, then a child's response to therapy could be 
determined simply by calculating the percentage of 
syllables stuttered. Measures of patients' satisfaction 
with treatment, their self-efficacy, and the perceptions of 
their parents and peers would be redundant. 
Theoretically, if other outcomes such as satisfaction and 
patient self-perception also are legitimate dimensions of 
intervention outcome, then one would be able to predict 
all of them by knowing a single strategically selected 
outcome variable, such as aided speech understanding in 
quiet for the BAHA user or post-treatment fluency for 
the stutterer. Unfortunately, an assumption that one 
particularly salient dimension can be used to predict all 
other dimensions is not often valid. For example, it is 
doubtful that we could take a person's weight and use 
that to predict height, hair colour and shoe size. All three 
variables are potentially interesting characteristics of 
the person, but probably only two of them relate to 
weight. This is a concept we will return to later. 

Indeed, the reality is somewhat more complicated. 
For any given population in any field of rehabilitation 
science, there are likely to be several relevant outcome 
dimensions that need to be measured to accurately 
characterize the effectiveness of our interventions. To 
return to our hearing aid example, perhaps the person's 
speech understanding in quiet is better with the hearing 
aid, but an ability to hear in quiet conditions and an 
overall satisfaction with the hearing aid are unrelated or 
minimally related dimensions for hearing aid users. If 
so, then failure to measure both will result in an 
incomplete assessment of intervention effectiveness. It is 
entirely possible that, despite this person's improvements 
in speech understanding, there is a more general 
dissatisfaction with the hearing aid's sound quality (an 
entirely separate dimension), which may reduce the 
patient's willingness to use the device, a potentially very 
expensive and wholly unacceptable outcome. In the case 
of the child who stutters, it would be indicative of a 
positive treatment outcome if the percentage of syllables 
stuttered dropped from 43% pre-treatment to less than 
4% post-treatment. However, even with such a dramatic 
improvement in a widely accepted measure of the effects 
of treatment, it is possible to also learn that the same 
child's self-efficacy score remains unchanged or that the 
parents report little or no improvement in the child's 
fluency at home. 
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What is needed is a method of identifying the relevant 
dimensions of outcome applicable across patient/client 
populations in rehabilitation science. Factor analysis, 
although traditionally used by psychologists for data 
reduction and development of measurement scales, holds 
great promise for rehabilitation researchers and clinicians 
as a method that can identifY relevant dimensions of 
intervention outcome (Humes, 1999, 2001, 2003). 

Factor analysis 
Factor analysis can be considered a family of 

statistical techniques that try to make sense of complex 
multivariate data (Everitt & Hay, 1992). In general, 
factor analysis tries to find an explanation for any 
relationships found among variables in a large set of 
measures, and it does this by grouping them into a 
smaller number of underlying dimensions. Stated 
differently, factor analysis attempts to determine the 
degree to which a set of measured variables (outcome 
measures in our case) cluster together and, in doing so, 
is said to "extract" the salient dimensions from the larger 
set of variables. There appears to be considerable laxity 
in the literature over the use of terms such as 'constructs,' 
'factors,' and 'dimensions' (Kline, 1994; Watson, 1998). 
For the purposes of this paper, we will continue to use 

Table 1 

the term 'dimensions' to represent phenomena that also 
are appropriately referred to as underlying 'factors' or 
, constructs.' 

For illustration, we will use an audiological example. 
We will adapt the tutorial on factor analysis for hearing­
aid outcome measures by Humes (2003) to the special 
case of Bone Anchored Hearing Aids (BAHA), including 
modification of the set of outcome measures obtained. 
In particular, we will make use of the same basic set of 
three illustrative correlation matrices used by Humes 
(2003) to explore the range of possible outcomes in the 
factor analysis of outcome measures. For the BAHA, we 
might have a hypothetical set of 15 outcome measures for 
this population. Perhaps we collected 3 measures of 
speech recognition (SRI, SR2, and SR3), 3 measures of 
sound quality (SQl, SQ2, SQ3), 3 measures of hearing 
aid satisfaction (Satfl, Satf2, Satf3), 3 measures of benefit 
(BenI, Ben2, Ben3) and 3 measures of quality of life 
(QOLl, QOL2, QOL3). 

Since we are interested in how the measured variables 
are related to one another, the first step in implementing 
a factor analysis is to produce a correlation matrix that 
looks for a relationship between each variable and every 
other variable. Table 1 shows a possible correlation 
matrix for our chosen variables. Tables of this type are 

Hypothetical correlation matrix for a situation in v.hich there are no clusters of highly related outcome measures. 

SR1 SR2 SR3 SQ1 SQ2 SQ3 Satf1 Satf2 Satf3 Ben1 Ben2 Ben3 QOL1 QOL2 QOL3 

SR1 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.1 0.1 0.2 

SR2 0.0 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.0 

SR3 0.0 0.2 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.2 

SQ1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.0 

SQ2 0.2 0.2 0.0 0.2 0.1 0.2 0.1 0.0 0.1 0.2 

SQ3 0.0 0.1 0.0 0.2 0.2 0.2 0.1 0.2 0.2 

Satf1 0.0 0.0 0.2 0.0 0.0 0.1 0.2 0.1 

Satf2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 

Satf3 0.2 0.2 0.2 0.0 0.1 0.1 

Ben1 0.2 0.1 0.2 0.0 0.2 

Ben2 0.2 0.0 0.2 0.2 

Ben3 0.2 0.1 0.2 

QOL1 0.1 0.1 

QOL2 0.1 

QOL3 
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usually generated using data from many subjects. 
It can be seen that the correlation coefficients are low 

for all variables, indicating that none of the outcome 
measures are closely related to one another. With such 
weak relationships among these variables, it might be 
reasonable to conclude that all 15 outcome measures are 
each measuring something unique. In essence, one could 
say that each outcome measure in this situation represents 
its own dimension and, therefore, an accurate 
characterization of the outcome for this BAHA 
population would require all of them, an extraordinary 
case of multi-dimensionality. Obviously, this is a highly 
unlikely scenario. 

A second possible scenario is shown in Table 2. Here 
the correlation matrix for the 15 outcome measures 
shows a different extreme insofar as the correlations are 
high for all variables. 

This correlation matrix represents the uni­
dimensional situation previously discussed. Since all 
outcome measures are highly related to one another, 
knowledge of anyone measure would allow us to predict 
the outcome of any other measure. In other words, if this 
were the case, we would only need to collect information 
on one outcome measure to accurately characterize this 
BAHA population. Since all other outcome measures 

Table 2 
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would be so clearly related to it, they would be redundant, 
a highly unlikely scenario. 

As is usually the case, reality lies somewhere between 
the extremes. Table 3 depicts a more typical hypothetical 
correlation matrix derived from our 15 outcome 
measures. 

I t can be seen that each measure of speech recognition 
is highly correlated with the other measures of speech 
recognition (SRI, SR2 and SR3) but not with any other 
measures. Similarly individual measures of sound quality 
(SQl, SQ2 and SQ3) are highly related to one another, 
as are the measures of benefit (Benl, Ben2 and Ben3). 
However, none of them is highly related to the other 
outcome measures. Similarly, the measurements of 
Satisfaction (Satt) correlate with one another, as do the 
measurements of Quality of Life (QOL). Arguably the 
most interesting relationships depicted in these data are 
those observable among Satf and Qat. Such inter­
relationships suggest a not-altogether surprising 
underlying dimension that might be labeled "beneficence" 
or some other term that the researcher believes will 
adequately capture the dimension. 

The correlations discussed so far have been relatively 
easy to uncover, since we used only 15 outcome measures 
for our matrix and intentionally made all of the 

Hypothetical correlation matrix for a situation in vIIich al/ variables are highly related to one another. 

SR1 SR2 SR3 SQ1 SQ2 SQ3 Satf1 Satf2 Satf3 Ben1 Ben2 Ben3 QOL1 QOL2 QOL3 

SR1 0.9 0.8 0.9 0.8 0.7 0.8 0.9 0.8 0.9 0.7 0.9 0.9 0.8 0.9 

SR2 0.9 0.8 0.9 0.9 0.9 0,7 0.7 0,7 0,9 0.8 0.8 0.8 0.7 

SR3 0.8 0.8 0.9 0.7 0.8 0.9 0,9 0.8 0.7 0.9 0.9 0.8 

SQ1 0.7 0.8 0.9 0.9 0,8 0,8 0.8 0.8 0.8 0.8 0.9 

SQ2 0.8 0.7 0.7 0.9 0.8 0.9 0.9 0,9 0,8 0.7 

SQ3 0.9 0.9 0.8 0.9 0.8 0.7 0.8 0.9 0.9 

Satf1 0.7 0,9 0.7 0.8 0.9 0.7 0.7 0.9 

Satf2 0.8 0.8 0.8 0.8 0.9 0.8 0.8 

Satf3 0.8 0.9 0.9 0.8 0.9 0,8 

Ben1 0.7 0.7 0.9 0.8 0.8 

Ben2 0.8 0.9 0.7 0.9 

Ben3 0.7 0.9 0.9 

QOL1 0,7 0.7 

QOL2 0.8 

QOL3 
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Table 3 

Hypothetical correlation matrix for a more typical situation in '.'.hich there are several distinct clusters of highly related outcome 
measures. 

SRi SR2 SR3 SQ1 SQ2 SQ3 Satfi 

SRi 0.9 0.8 0.1 0.1 0.1 0.1 

SR2 0.8 0.1 0.2 0.2 0.1 

SR3 0.1 0.0 0.1 0.1 

SQ1 0.9 0.9 0.1 

SQ2 0.8 0.1 

SQ3 0.1 

Satf1 

Satf2 

Satf3 

Ben1 

Ben2 

Ben3 

QOL1 

QOL2 

QOL3 

correlational values starkly different. In fact, the required 
number of comparisons was small enough that we were 
able to visually scan the matrix and literally see the 
patterns. We can factor analyze relatively few outcome 
measures, 15 in this example, or many outcome measures, 
50 to 100, or more if necessary, but virtually never would 
the relationships be so obvious. Realistically, many more 
outcome variables would be commonplace, and any 
relationships would be considerably more subtle for the 
most part. 

As the number of outcome measures increases, the 
number of comparisons to be made in the matrix increases 
by the following equation: [n x (n-l) 2J (Norman & 
Streiner, 2000). For example, with 15 outcomes measures 
we needed to scan 105 correlations looking for 
relationships. If the number of outcome measures 
increased to 20, the number of correlations we would 
need to scan would increase to 190. With 25 outcome 
measures the number would be 300. Obviously, visual 
scanning of 300 correlations with subtle differences in 
values for possible underlying dimensions would be 
nearly impossible. Fortunately, computers can scan any 
number of correlations with relative ease. 

Satf2 Satf3 Ben1 Ben2 Ben3 QOL1 QOL2 QOL3 

0.1 

0.2 

0.0 

0.1 

0.2 

0.0 

0.9 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.1 0.2 0.2 0.1 0.2 0.2 

0.1 0.1 0.0 0.1 0.1 0.0 0.1 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

0.2 0.1 0.2 0.2 0.1 0.2 0.2 

0.1 0.1 0.0 0.1 0.1 0.0 0.1 

0.9 0.1 0.1 0.1 0.9 0.9 0.8 

0.8 0.1 0.2 0.2 0.9 0.8 0.9 

0.1 0.0 0.1 0.9 0.9 0.9 

0.9 0.9 0.1 0.1 0.1 

0.8 0.1 0.2 0.2 

0.1 0.0 0.1 

0.9 0.9 

0.8 

How to Proceed 
Think back to our first hypothetical scenario. By 

scanning the correlation matrix, we could easily tell that 
none of the variables were related to one another. 
Intuitively, it made no sense to continue to analyze the 
correlations for underlying dimensions, because it was 
obvious that no relationships were evident in the matrix. 
In a more realistic situation in which we may not be able 
to see relationships with our eyes, statistical software can 
be set to work performing similar "checks" to ensure that 
there are at least some relationships within the matrix 
before proceeding. Two of the most common tests are 
Bartlett's test of sphericity and the Kaiser-Meyer-Olkin 
measure of sampling adequacy (KMO). 

Hypothetical output from SPSS is shown in Table 4. 
Without going into the details of how each is calculated, 
some general rules can be used. The closer the KMO 
measure is to 1, the better. The KMO is based on squared 
partial correlations. Therefore, a KMO of 1 would 
represent perfect correlation while a KMO of 0 (zero) 
would represent no correlation. Some users look for 
values greater than .50 for each variable, as well as for the 
set of variables, but Kaiser (as cited in Norman & Streiner, 
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2000) suggests a more conservative criterion, that the 
KMO should be at least .60 if one is to continue to the 
next step of extracting dimensions. Bartlett's test of 
sphericity produces a chi-square statistic and tests the 
null hypothesis that the correlation matrix is made up 
of diagonal elements equal to 1 and off-diagonal elements 
equal to O. The researcher wishes to reject this null 
hypothesis in hopes of being able to proceed to the next 
step, extracting dimensions. If the chi square is high and 
the p-value low (i.e., p < .05), it likely is safe to proceed. 
In other words, low scores from a KMO test or a non­
significant Bartlett's F statistic indicate that the variables 
probably are independent of one another, or at least not 
dependent enough to be interesting from the point of 
view of factor analysis. 

Table 4 

Sample output from SPSS shoVting Mo of the most 
common tests of correlation matrix adequacy 

Kaiser-Meyer-Olkin Measure 
of Sampling Adequacy 

Bartlett's Test of Sphericity 

0.888 

Chi-Square 6230.901 

df 91 

Sig. .000 

Extracting Dimensions 
Assuming that the preliminary" check" suggests it is 

acceptable to proceed, the next step involves extracting 
the dimensions from the correlation matrix. Again, the 
intricacies of the calculations are beyond the scope of 
this paper.2 In general, what we are hoping to find is a 
smaller number of dimensions made up of two or more 
related variables. Ideally, the dimensions will be 
unrelated to one another, and will explain much of the 
variance in the entire set of outcome measures (Gardner, 
1995). The principal components analysis (PCA) is the 
most common type of factor analysis for this purpose. 
PCA generates a number of potential dimensions and 
rank orders them in terms of the amount of variance 
each explains. Table 5 shows sample output from SPSS 
with 15 outcome measures entered into a PCA. By 
looking at the cumulative percentage column, it can be 
seen that the first four dimensions (called "Components" 
in the table) account for approximately 80% of the 
variance in the entire solution. 

Deciding Which Dimensions to Keep 
Despite the computer doing much of the work (e.g., 

doing a preliminary check, identifying potential 
dimensions by looking for inter-relationships among 
variables, and rank ordering dimensions that account 
for the greatest variance), the researcher must still 
decide which dimensions to keep. In fact, it could be 
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argued that the number of dimensions to retain in a 
factor analysis is one of the most important steps in the 
process (Gorsuch, 1983). Unfortunately, despite its 
importance, determining which dimensions to retain 
remains one of the most controversial aspects of factor 
analysis (Allison, Gorman & Primavera, 1983).3 

For most statistical packages (i.e., SPSS) the default 
criterion commonly used is the eigenvalue 1 test. 
Eigenvalues, which are calculated for each dimension 
(component), are an index of the variance in the data set, 
specifically the amount of variance explained by that 
particular dimension. As mentioned previously, all the 
outcome measures entered into the factor analysis were 
converted to standard scores (mean 0, variance = 1). 
Revisiting our first scenario in which correlations among 
the 15 outcome measures were found to be unrelated to 
one another, it is likely that each outcome measure 
would account for an equal amount of the variance 
(100% -+ 15 = 6.67%) in that situation. In terms of 
eigenvalues, each outcome measure would have an 
eigenvalue of 1. Conversely, looking back at Table 5, it 
can be seen that each of the four dimensions that account 
for a large proportion of the variance in that example, all 
have eigenvalues greater than 1. According to the 
eigenvalue 1 test, we should retain these four dimensions, 
but not the others. 

Thus far, this process has been fairly straightforward. 
What if a solution contained two dimensions with 
eigenvalues of 1.03 and 0.97 respectively? Is a dimension 
with an eigenvalue of 1.03 more important than a 
dimension with an eigenvalue ofO.97? Would you keep 
the former and discard the latter? That is hard to decide 
because of the small difference. A useful tool, also avail ab le 
in SPSS, to assist with the decision-making is Cattell's 
Scree Plot (Norman & Streiner, 2000). There are no 
equations for this test. In fact, it is simply a plot of the 
eigenvalues for each dimension. Figure 1 shows the scree 
plot4 for the IS-measure example presented in Table 5. 
Reading from left to right, one will note that, starting 
with the fifth dimension, the line becomes nearly flat, 
which means that the fifth and subsequent dimensions 
account for ever-decreasing amounts of the total 
variance. Alternatively, the researcher can work 
backward (from right to left) through the rubble looking 
for the point at which the line takes a precipitous upward 
trend. The first dimension above the change from 
horizontal to vertical is the last of the dimensions that 
account for the lion's share of the variance. Generally 
this will coincide with principal components whose 
eigenvalues are greater than 1, because components with 
eigenvalues less than 1 account for less variance than the 
original variable and, therefore, explain relatively little 
of the total variance. 

In this straightforward example, the scree plot helps 
the researcher see that the first four dimensions would be 
retained, since there is a steep drop in eigenvalues between 
dimensions 4 and 5. If dimension S approached I, the 
researcher might consider keeping 5 dimensions in the 
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Table 5 

Sample output from SPSS demonstrating the percentage 
of variance explained by each underlying dimension in a 
PCA solution using 15 hypothetical measures. 

Initial Eigenvalues 

Component Total %of Cumulative 
Variance % 

6.776 39.993 

2 1.998 16.876 

3 1.975 12.227 

4 1.186 10.722 

5 .876 3.889 83.707 

6 .672 3.888 87.595 

7 .339 2.972 90.567 

8 .254 2.14 92.707 

9 .199 1.719 94.426 

10 .165 1.101 95.527 

11 .153 0.992 96.519 

12 .130 0.982 97.501 

13 .109 0.976 98.477 

14 .089 0.811 99.288 

15 .078 0.712 100 

solution. It is important to note that SPSS uses the 
eigenvalue 1 as its default test of dimensionality. If, based 
on analysis of a scree plot, a researcher wishes to retain 
a dimension with an eigenvalue < 1, the researcher 
would need to lower the eigenvalue criterion (an 
option in SPSS) and run the analysis again, so the 
additional dimension would be included in the analysis. 

Determining What the Dimensions Actually 
Represent 

Once a decision is reached regarding which 
dimensions to keep, the researcher will need to figure out 
what those dimensions actually represent. Earlier in the 
third hypothetical BAHA example, we decided that, 
since all three measures of speech recognition correlated 
with each other, but not with other measures, they might 
represent a unique dimension that could be called" speech 
recognition." Similarly, we might also decide that there 
isa "sound quality" dimension and a "benefit" dimension. 
Finally, we might have a dimension called "beneficence", 
since the satisfaction and quality oflife outcome measures 

correlated well with each other. These hypothetical 
relationships are depicted in Figure 2. 

Again, this illustration was intended to make this 
task look straightforward. If we look back at our 15-
outcome measure example in Table 5, we see that 
dimension 1 accounts for approximately 40% of the 
variance, dimension 2 accounts for approximately 16.9% 
and dimensions 3 and 4 account for only 12.2% and 
10.7% respectively. Dimension 1 accounts for 
disproportionately more variance than do the other 
dimensions. Statistically, there is nothing wrong with 
this situation; however, from an interpretation 
standpoint, disproportionate variance between the 
dimensions makes it more difficult to decide what a 
particular dimension actually represents (Gorsuch, 
1983). In order to distribute the variance more evenly 
among the 4 dimensions, factor rotation is used.5 Another 
common problem with un-rotated solutions is that they 
are often hard to interpret because some variables tend 
to load nearly equally on more than one dimension. This 
is known as factorial complexity. Rotated solutions 
sometimes reduce factorial complexity and make a factor 
analysis easier to interpret or more sensible, even if the 
variance explained by each dimension is similar, and 
may be necessary to obtain plausible groupings of items 
within each dimension. 

Of the several rotation strategies available in SPSS, 
the researcher can only determine which one provides 
the optimal solution by performing all of them. 
However, most researchers do not perform all possible 
rotations. Instead, they typically stop with the first 
rotation that provides a meaningful solution. 

Varimax rotation is the most common rotation 
choice. It is an orthogonal rotation that differentiates 
the original dimensions by revealing either large or 

7~--------------------------------~ 

6 

5 

4 

3 

2 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Component 

Figure 1. Scree plot of eigenvalues by dimension (component) 
for a hypothetical IS-measure peA 
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Dimension 

Speech 
Recognition 

Sound 
Quality 

Benefit 

Beneficence 

Outcome Measure 

Figure 2. Hypothetical relationships between the 15 
outcome measures and the 4 potential underlying 
dimensions. 

small loadings for most variables, making it relatively 
easy for the researcher to identify all of the variables that 
belong on a particular dimension. However, when the 
Varimax rotation does not reveal an optimal 
combination of dimensions, there are two common 
alternative strategies that also use orthogonal rotations. 

Two common alternative strategies are the 
Quartimax rotation and the Equimax rotation. The 
Quartimax rotation tries to reduce the number of 
variables required to explain each dimension by finding 
a generic single-dimension solution represented by the 
most salient variables. Although highly desirable in 
some research, it generally would not be useful in the 
current application, which attempts to reveal 
multidimensional outcomes. The Equimax rotation is a 

Factor analysis in rehabilitation science 

compromise between the Varimax and Quartimax 
rotations that tries to find a solution with either large or 
small loadings for most variables. Sometimes this 
simplifies identification of dimensions and yields a 
parsimonious set of dimensions. When none of the 
orthogonal rotations adequately differentiates 
dimensions, an oblique rotation may be easier to 
interpret. 

Oblique rotations, such as Direct Oblimin and 
Promax rotations, are non-orthogonal solutions which 
yield dimensions that, because they are correlated, tend 
to be harder to interpret. Promax rotations are 
recommended only for very large data sets, which are not 
usually available in communication sciences and 
disorders research. Oblimin and Promax rotations tend 
to be less useful when one is attempting to simplify and 
understand an overarching phenomenon having many 
dimensions, especially when there is an abundance of 
overlap or correlations among the dimensions. 

Once the dimensions have been rotated, the computer 
will generate a "rotated factor loading matrix." When 
considering factor loadings, we are asking, "How well 
does a particular outcome measure load onto each 
dimension?" For simplicity, the factor loadings can be 
read and interpreted as though they are correlation 
coefficients. Technically, they are standardized regression 
coefficients (Gardner, 1995). The higher the correlation, 
the better that outcome measure loads onto a particular 
dimension. Once we have determined which measures 
load onto a particular dimension, our understanding of 
the shared nature of those outcome measures begins to 
take shape. We are now in a position to deduce what the 
underlying dimension might be and give it a labeL 

This is illustrated in Table 6. Listed are the rotated 
factor loadings for each outcome measure on each 
underlying dimension. By analyzing the factor loadings 
of each outcome measure, it can be seen that dimension 
1 likely represents a "speech recognition" dimension, 
while dimensions 2 and 3 likely represent "sound 
quality" and "satisfaction/use" or "beneficence" 
dimensions respectively. 

Indeed, this solution is what we had originally 
predicted from just the correlation matrix. Now, having 
gone through the full factor analysis, we have much more 
definitive evidence that these dimensions actually exist­
hypothetically speaking. If this were a real-life example, 
for our BAHA patients, we could be fairly confident that 
including at least one measure from each dimension (one 
measure of speech recognition, one measure of sound 
quality, one measure of benefit and one measure of either 
satisfaction or quality of life) might be necessary to 
accurately assess our intervention. The factor analysis 
performed its function well; it helped determine the 
relevant outcome dimensions from a large set of outcome 
measures for a given population. 
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Confirmatory factor analysis 
Sometimes, when doing factor analysis, one is simply 

trying to make sense of the data. When that is the case, 
one is conducting exploratory factor analysis, trying to 
find out how many dimensions there are and what they 
look like. In those instances, exploratory factor analysis 
is really being used as a data reduction technique. 
Confirmatory factor analysis, on the other hand, 
requires that we already know, or think we know, what 
our measures mean, and we want to test our assumptions. 
Confirmatory factor analysis is used to find out if the 
number of dimensions and the variables that load on 
each conform to what is expected on the basis oflogic or 
pre-existing theory. To use it, the researcher must decide 
a priori what each dimension should be (perhaps even 
what it should be called) and which variables are the best 
measures of that dimension. To the extent that the 
researcher's a priori hypotheses are borne out in the 
results of the factor analysis, the results are said to be 
reliable. In confirmatory factor analysis, one tests 
hypotheses that correspond to prior theoretical notions, 
which can include the number and nature of factors, but 

Table 6 

Rotated factor loading matrix from a hypothetical factor 
analysis wth items loading on each factor circled 

SR1 

SR2 

SR3 

SQ1 

SQ2 

SQ3 

Ben1 

Ben2 

Ben3 

Satf1 

Satf2 

Satf3 

QOL1 

QOL1 

QOL3 

0.21 

0.13 

0.14 

0.22 

0.14 

0.15 

0.11 

0.07 

0.09 

0.05 

0.11 

0.14 

Dimension 

2 3 4 

0.10 0.11 0.14 

0.07 0.12 0.15 

0.06 0.06 0.11 

0.09 0.07 

0.13 0.09 

0.12 0.05 

0.11 0.11 

0.12 0.14 

0.06 0.07 

0.09 0.07 

0.13 0.07 

0.12 0.09 

0.07 0.10 

0.07 0.07 

0.09 0.06 

can include much more complex hypotheses, such as the 
equality of factor pattern matrices across populations 
or across subsets of the same population represented by 
more than one sample. In fact, when a sample is of 
adequate size, we can split it into two approximately 
equal subsets and perform two factor analyses, one on 
each set. If the results of the analysis of the second data 
set confirm the results of the analysis of the first data set, 
then the confirmatory factor analysis was successfuL 

Size of data set 
The keen observer will have noticed that no mention 

has been made of how many outcome measures are 
needed or how many subjects should be included in a 
factor analysis. There are no power tables for factor 
analysis; there are only strongly held beliefs and simple 
rules of thumb (Gorsuch, 1983; Humes, 2003; Norman 
& Streiner, 2000). Gorsuch's (1983) text is widely 
considered to be the most comprehensive treatment of 
factor analysis. In it, the author suggests that there 
should be at least four outcome measures for each 
dimension being assessed. In our hypothetical example, 
we should have included four outcomes measures for 
every possible dimension (4 SR, 4 SQ, 4 Satf, 4 Ben and 
4 QOL) for a total of 20 outcome measures. 

Defining a precise rule for the number of subjects to 
include in a factor analysis is also difficult (Humes, 
2003). Again, Gorsuch (1983) suggests a rule of thumb: 
The number of subjects should be, at minimum, five 
times greater than the number of outcome measures in 
the study and seldom fewer than 100 subjects. 

In short, more measures of each dimension are better, 
and more subjects are always better. It is almost 
impossible to have too many. 

Discussion and Conclusions 
Rehabilitation outcome, regardless of discipline and! 

or health condition, is likely to be multi-dimensional. As 
such, it is imperative that clinicians attempt to measure 
the dimensions that are relevant for a given population. 
There are framework documents and theoretical 
guidelines that could be used by clinicians to assist them 
in choosing appropriate outcome measures (e.g. ICIDH-
2; WHO, 2003). However, theoretically important 
factors and empirically important factors for a given 
population with a given health condition may not be 
equivalent. 

Factor analysis may be considered an alternative or 
adjunct method of understanding the often complex 
underlying dimensions of outcomes in healthcare delivery 
and it is available to clinicians and researchers who 
desire assistance with the question, "What outcome 
measures should I use to show that my intervention was 
successful?" 
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Footnotes 
'As it is beyond the scope ofthis paper, an assumption is made that all outcome 

measureS discussed herein are responsive and hav ... validity and reliability data to 
support their use. 

] The interested read..., Is directed to Gorsuch (1983) for a thorough review of 
the multivarlate general linear model and its relationship to the extraction of 
dimensions. 

, See Aillson et al. (1983) for a thorough r ... vlew of this topiC. 
, Scree is the rubble of loose rock that accumulates at the foot of a mountain, 

In factor analytical terms, it Is the rubble of leftover dimensions that accumulate 
after the imp~rtant dimensions have been identified. 

5 See Gorsuch (1983) and Norman & Greiner (2000) for additional information 
on factor rotation. 
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